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Abstract. We develop a systematic procedure for constructing quantum many-body problems
whose spectrum can be partially or totally computed by purely algebraic means. The exactly
solvable models include rational and hyperbolic potentials related to root systems, in some
cases with an additional external field. The quasi-exactly solvable models can be considered
as deformations of the previous ones which share their algebraic character.

1. Introduction

Since the pioneering works of Calogero and Sutherland [1–5], much effort has been invested in
the study of quantum many-body problems. A thorough classification of completely integrable
Hamiltonians related to root systems has been performed in the early 1980s by Olshanetsky
and Perelomov, both in the classical [6] and the quantum cases [7]. The complete integrability
of these models is associated with an underlying root system structure, the integrals of motion
being related to the radial parts of the Laplace–Beltrami operator on a symmetric space with
the given root system.

Some years ago, Turbiner showed, using Lie-algebraic techniques, that many (though not
all) of the Olshanetsky–Perelomov (OP) Hamiltonians are also exactly solvable [8, 9]. By exact
solvability here we mean that theN -body Hamiltonian preserves an infinite increasing sequence
of subspaces of known smooth functions, whereas a quasi-exactly solvable Hamiltonian just
preserves a single finite-dimensional subspace. The construction of these invariant subspaces
is usually based on the theory of representations of Lie algebras of differential operators [10].

Much interest has been devoted to the analysis of the eigenfunctions of these models.
The bounded states are related to orthogonal polynomials and multivariable generalizations
of hypergeometric functions [11–16]. The scattering states exhibit solitonic properties and
behave asymptotically as Bethe ansatz wavefunctions [17].

The idea of constructing exactly solvable many-body problems based on the zeros and
poles of special solutions of partial differential equations has long been known. The original
work [18] explores in depth this relation at the classical level. This idea has been exploited by
Hou and Shifman in a recent paper [19], which extends this approach to the quantum case using
Lie-algebraic techniques, thereby obtaining a new family of quasi-exactly solvable many-body
potentials.
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In this paper we apply Calogero’s procedure for constructing solvable many-body
problems to the most general quasi-exactly solvable operator on the line admitting square-
integrable eigenfunctions, finding several families of exactly and quasi-exactly solvable many-
body problems on the line. The exactly solvable Hamiltonians include Calogero’s original
model and many of Olshanetsky–Perelomov’s non-periodic Hamiltonians, and also a family
of potentials which are not directly related to a root system due to the presence of an external
field. The latter model has been studied by Inozemtsev and Meshcheryakov [20], who derived
its discrete spectrum from that of the standard hyperbolic BCN model by a limiting process.

It should be emphasized that, although the construction presented here leads to many
previously known potentials based on root systems, our approach is entirely different from the
usual one, in that no use needs to be made of any underlying root system structure. The main
advantage of this algebraic method over the root system approach (see, for instance, [7, 21–
23]) is that the former allows for deformations of the exactly solvable models preserving their
solvability to some extent. Another important feature of the method presented in this paper is
that it gives explicit solutions for elliptic models [24].

The paper is organized as follows. In section 2 some basic definitions are given, and
the construction of the general many-body Hamiltonian is explained. The algebraization of
this Hamiltonian is discussed in section 3 for the five families of normalizable quasi-exactly
solvable operators on the line. In section 4 the energy spectrum of all exactly solvable models
obtained in the previous section is given explicitly. In section 5 we work out a few concrete
examples, and we sum up the conclusions and outline future work in section 6. Some useful
expressions for handling symmetric variables can be found in appendix A. All the solvable
potentials constructed in the paper appear in two tables in appendix B.

2. Derivation of HN

A Schrödinger operator

H = −
∑
k

∂2
xk

+ V (x) (1)

(where x belongs to an open subset of Euclidean space) is said to be quasi-exactly solvable
(QES) if it preserves a known finite-dimensional subspace M of smooth functions. The
spectral problem for H reduces in this space to diagonalizing the matrix of H |M, which
makes it possible to compute a finite subset of the spectrum of H by purely algebraic
means. If H preserves an infinite increasing sequence of known finite-dimensional subspaces
M0 ⊂ M1 ⊂ · · · ⊂ Mk ⊂ · · · then we shall call it exactly solvable (ES), since in this case
one can algebraically compute an arbitrary number of eigenfunctions and eigenvalues of H by
restricting it to each Mk . (If M or the Mk’s are not in L2, some of the eigenfunctions of H
computed in this way may turn out not to be square-integrable; see [26] for an analysis of this
issue in the one-dimensional one-particle case.)

The QES (or ES) character of a Schrödinger operator is invariant under a natural group
of equivalence transformations, generated by changes of coordinates x �→ z = Z(x)

and conjugation by arbitrary non-negative functions µ(z), which map H ≡ H(x) into the
differential operator (not necessarily of Schrödinger type)

H(z) = µ(z)−1H(x) µ(z). (2)

Thus, if H(x) preserves M ≡ M(x) then H(z) preserves the subspace

M(z) = µ(z)−1M(x) (3)
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and if ψ(x) is an eigenfunction of H(x) with eigenvalue E belonging to M(x) then
ψ(z) = µ(z)−1ψ(x) is an eigenfunction of H(z) lying in M(z) with the same energy
E. Note, however, that such an equivalence transformation may not preserve the square
integrability of the eigenfunctions, since µ(z) is not required to be unimodular.

A very general way of constructing QES Schrödinger operators is to start with a finite-
dimensional Lie algebra of differential operators ḡ admitting finite-dimensional representations
in the space of smooth functions in the variable z (usually called a quasi-exactly solvable
algebra in the literature). Any differential operator H(z) belonging to the enveloping
algebra of ḡ will automatically preserve the carrier space M(z) of such a finite-dimensional
representation. If one can find an equivalence transformation (2) such that the differential
operator H(x) is of Schrödinger type (1), then H(x) is clearly a QES Schrödinger operator,
since it preserves the finite-dimensional subspace M(x) = µ(z)M(z). In this case, one says
that g = µ(z) ḡµ(z)−1 is the hidden symmetry algebra responsible for the QES character
of H(x). In this paper we shall be almost exclusively concerned with this special type of
quasi-exactly solvable Schrödinger operators, that we shall call algebraic to single them out
from the rest. The function µ(z) is usually called the gauge factor in the literature, and H(z)

is referred to as the gauge Hamiltonian [25].
In one dimension, the only Lie algebra of first-order differential operators is (up to

equivalence) the standard projective realization of sl(2) (or its subalgebras), with basis elements

J−
N = ∂z J 0

N = z ∂z − 1
2N J +

N = z2 ∂z − Nz. (4)

If N is a non-negative integer, the latter algebra admits an (N + 1)-dimensional representation
in the space PN of polynomials of degree �N . The most general second-order differential
operator belonging to the enveloping algebra of the Lie algebra (4), obtained by constructing
an arbitrary quadratic combination of the generators (4), is of the form

−H(z) = P(z) ∂2
z + Q̃(z) ∂z + R̃(z) (5)

with

Q̃(z) = Q(z) − N − 1

2
P ′(z) R̃(z) = R − N

2
Q′(z) +

N

12
(N − 1)P ′′(z) (6)

where P , Q and R are arbitrary polynomials of degree four, two and zero, respectively, and
the minus sign in equation (5) is for later convenience. If P is positive, the operator (5) is
equivalent (in the sense of (2)) to a Schrödinger operator H(x) = −∂2

x + V (x) by the change
of variables

x = ξ(z) =
∫ z dy√

P(y)
(7)

and conjugation by the gauge factor

µ(z) = P(z)−1/4 exp

{∫ z Q̃(y)

2P(y)
dy

}
. (8)

Let N � 1, and assume, for the sake of simplicity, that the gauge Hamiltonian (5)
is diagonalizable in PN . Then H(z) has N + 1 algebraically computable polynomial
eigenfunctions ϕk(z) (0 � k � N ) of degree �N , and therefore H(x) has N + 1 algebraically
computable eigenfunctions of the form

ψk(x) = µ(z) ϕk(z)|z=ξ−1(x) 0 � k � N. (9)
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Following Calogero’s original idea, consider now the time-dependent Schrödinger
equation with Hamiltonian H(x), namely

H(x)�(x, t) = i∂t�(x, t). (10)

Since H(x) is time-independent, the latter equation will admit solutions of the form

�(x, t) =
N∑
k=0

ckψk(x) e−iEkt (11)

where ψk(x) is an eigenfunction of H(x) of the form (9) with energy Ek , and c0, . . . , cN are
arbitrary complex constants. Equivalently,

�(x, t) = µ(z)�(z, t)|z=ξ−1(x) (12)

with

�(z, t) =
N∑
k=0

ckϕk(z) e−iEkt . (13)

Since each ϕk(z) is a polynomial of degree �N (and at least one of them is of degree N , since
otherwise H(z) would not be diagonalizable in PN ), it follows from the latter equation that
�(z, t) is a polynomial of degree N in z with time-dependent coefficients. Therefore, we can
write

�(z, t) = C(t)

N∏
j=1

[z − zj (t)]. (14)

It follows from equation (12) that each zero zj (t) of �(z, t) yields a zero

xj (t) = ξ
(
zj (t)

)
1 � j � N (15)

of the time-dependent wavefunction�(x, t). We will study the motion of these zeros, showing
that it can be derived from a classical Lagrangian.

Indeed, substituting (12) into Schrödinger’s equation (10) and using (14) we easily obtain
the equation

N∑
j,k=1
j =k

P (z)(
z − zj (t)

)(
z − zk(t)

) +
N∑
j=1

Q̃(z)

z − zj (t)
+ R̃(z) = i

N∑
j=1

żj (t)

z − zj (t)
− i

Ċ(t)

C(t)
(16)

which must hold identically in z and t . Equating the residue of both sides at z = zk(t) we
arrive at the following system of differential equations for the functions zk(t):

iżk = Q̃(zk) + 2
N∑
j=1
j =k

P (zk)

zk − zj
≡ Fk(z) 1 � k � N. (17)

Conversely, it can be shown without difficulty that the latter equations imply equation (16). In
order to show that (x1(t), . . . , xN(t)) follows a trajectory of a certain Lagrangian system, we
shall make use of the following lemma:
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Lemma 1. Consider the autonomous system of first-order ordinary differential equations

iẋk = fk(x) k = 1, . . . , N x ≡ (x1, . . . , xN) ∈ C
N. (18)

If the 1-form
∑N

k=1 fk(x) dxk is closed, then the second-order system obtained by differentiating
(18) once with respect to t is Lagrangian, with the Lagrangian being given by

L = ẋ2 −
N∑
j=1

f 2
j (x). (19)

Proof. The second-order system obtained by differentiating (18) with respect to t is

ẍk = −i
N∑
k=1

ẋj
∂fk

∂xj
= −

N∑
k=1

fj
∂fk

∂xj
1 � k � N. (20)

On the other hand, the Euler–Lagrange equations associated with the Lagrangian (19) are

2ẍk = ∂L

∂xk
= −2

N∑
j=1

fj
∂fj

∂xk
1 � k � N. (21)

If
∑N

k=1 fk(x) dxk is closed then

∂fk

∂xj
= ∂fj

∂xk

so that (20) and (21) are indeed identical. �
In our case, the system (18) is obtained from (17) by the change of independent variables

(15), with ξ(z) as in (7). Since ẋk = P(zk)
−1/2żk , we have

fk = P(zk)
−1/2Fk (22)

and

N∑
k=1

fk(x) dxk =
N∑
k=1

Fk(z)

P (zk)
dzk. (23)

The latter 1-form is clearly closed, since if j = k we have

∂

∂zj

(
Fk(z)

P (zk)

)
= ∂

∂zj


Q̃(zk)

P (zk)
+

N∑
l=1
l =k

2

zk − zl


 = 2

(zk − zj )2

which is clearly symmetric under the exchange of j and k. It follows from the previous lemma
and equations (19) and (22) that the zeros x(t) of the time-dependent wavefunction (11) move
along a trajectory of the Lagrangian system with the Lagrangian

L =
N∑
k=1

ẋ2
k −

N∑
k=1

F 2
k (z)

P (zk)
(24)

whose associated Hamiltonian is

HN =
N∑
k=1

p2
k +

N∑
k=1

F 2
k (z)

P (zk)
. (25)
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Substituting (17) into (25) and letting pk = −i∂xk we obtain the N -particle quantum
Hamiltonian

HN = −
N∑
k=1

∂2
xk

+ VN(x) (26)

where

VN(x) =
N∑
k=1

Q̃2
k

Pk

+ 4
N∑

j,k=1
j =k

Q̃k

zkj
+ 4

N∑
j,k=1
j =k

Pk

z2
kj

+ 4
N∑

j,k,l=1
j =k =l =j

Pk

zkj zkl
(27)

and we have set

Pk = P(zk) Q̃k = Q̃(zk) zkj = zk − zj .

It will be convenient for our purposes to allow the coefficients of each of the four sums in
equation (27) to be different. Dropping an inessential overall factor we finally arrive at the
following formula for the potential:

VN(x) = 1

4

N∑
k=1

Q̃2
k

Pk

+ g1

N∑
j,k=1
j =k

Q̃k

zkj
+ g2

N∑
j,k=1
j =k

Pk

z2
kj

+ g3

N∑
j,k,l=1
j =k =l =j

Pk

zkj zkl
. (28)

The main purpose of this paper is to show that, for certain choices of the polynomials
P(z) and Q̃(z) (and, sometimes, the constant g1), the N -particle quantum Hamiltonian with
potential (28) is quasi-exactly solvable or even, in certain cases, exactly solvable. This will be
proved in the next section, essentially by showing that HN lies in the enveloping algebra of a
quasi-exactly solvable Lie algebra of first-order differential operators equivalent to a certain
standard realization of sl(N + 1) (cf equation (29) below).

3. Algebraization of HN

We shall prove in this section that the Hamiltonian (26)–(28) derived in the previous section
is algebraic, provided that P(z), Q̃(z) and (in certain cases) g1 are chosen appropriately. In
analogy with the one-particle case, we shall show that HN(x) is equivalent under a change of
variables and a gauge transformation (2) to a gauge Hamiltonian HN(z) which can be written
as a quadratic polynomial in the differential operators

Dk = ∂τk Njk = τj ∂τk Uk = τk

(
m −

N∑
i=1

τi∂τi

)

j, k = 1, 2, . . . , N

(29)

spanning the Lie algebra sl(N + 1). In the previous formulae m is a non-negative integer, and
we have denoted by

τk =
∑

i1<i2<···<ik
zi1zi2 · · · zik 1 � k � N (30)

the kth elementary symmetric function. Since the operators (29) preserve the finite-dimensional
module

Mm = span

{
τ
l1
1 τ

l2
2 · · · τ lNN : li ∈ N ∪ {0},

N∑
i=1

li � m

}
(31)
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of polynomials of degree �m in the symmetric variables τ = (τ1, . . . , τN),HN(z) is algebraic,
possessing (at most) dim Mm = (

m+N
m

)
eigenfunctionsχk

(
τ(z)

)
that are polynomials of degree

�m in τ . It follows from the discussion in the previous section that HN(x) is also algebraic,
and that it admits eigenfunctions of the form

ψk(x) = µ(z) χk
(
τ(z)

)
(32)

whereµ(z) is the gauge factor, whose specific form will be given below (cf (37)), andχk
(
τ(z)

)
is a polynomial eigenfunction ofHN(z)which can be computed algebraically. For this reason,
we shall henceforth use the term algebraic eigenfunction to refer to an eigenfunction of HN

of the form (32).
The generators

Dk,Njk; 1 � j � k � N (33)

span the Borel subalgebra bN+1 ⊂ sl(N+1), which preserves the infinite sequence of subspaces
M0 ⊂ M1 ⊂ M2 ⊂ · · · . Therefore, if HN is a quadratic combination of the differential
operators (33) then the physical Hamiltonian HN is exactly solvable.

It will also prove convenient in what follows to define the polynomial subspaces

Lk = span

{
τ
l1
1 τ

l2
2 . . . τ

lN
N : li ∈ N ∪ {0},

N∑
i=1

ili = k

}
(34)

of all the symmetric polynomials homogeneous of degree k in the variables z = (z1, . . . , zN),
and their direct sums

M̂m =
m⊕
k=0

Lk. (35)

Clearly, M̂m ⊂ Mm, though, in general, M̂m need not be invariant under the action ofHN . An
important exception occurs when HN is exactly solvable; indeed, it will be shown in section 4
that in this case HN preserves the infinite sequence M̂0 ⊂ M̂1 ⊂ M̂2 ⊂ · · · . This important
fact shall be used in section 4 to derive a formula for the energy spectrum of all the exactly
solvable models we shall construct, and in section 5 to exactly compute some eigenfunctions
of HN and their corresponding energies for an arbitrary number of particles N .

We shall restrict ourselves in this paper to polynomials P(z) whose corresponding one-
particle QES operators (5) admit normalizable (i.e. square-integrable) eigenfunctions [26],
referring to [24] for the periodic case. In the normalizable case, there are five canonical forms
for P(z), all of which can be taken as monic polynomials of degree not greater than two. By
(6), Q̃(z) is then an arbitrary quadratic polynomial

Q̃(z) = c̃+z
2 + c̃0z + c̃−. (36)

Let us define the gauge Hamiltonian HN(z) by equation (2), where the gauge factor

µ(z) =
∏
j<k

zajk

∏
k

P
b/2
k exp

{
c

2

∫ zk Q̃

P

}
(37)

has been chosen by analogy with the one-particle case (cf [26]), and a, b, c are real parameters.
(From now on, all indices in sums and products will implicitly run from 1 to N , with the
restrictions indicated under the summation or product symbols.) Using (28) and dropping an
additive constant we obtain the following explicit formula for HN(z):

HN(z) = −
∑
k

Pk∂
2
zk

−
∑
k

[(
b + 1

2

)
P ′
k + cQ̃k

]
∂zk − 2a

∑
j =k

Pk

zkj
∂zk + V N(z) (38)
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where

V N(z) = A1τ1 + A2

∑
j =k

Pk

z2
kj

+
∑
k

1

Pk

[
A3P

′
k

2 + A4Q̃kP
′
k + A5Q̃

2
k

]
(39)

and the coefficients Ai are given by

A1 = c̃+ [(N − 1)(g1 − ac) − c] A2 = g2 − a(a − 1) A3 = − 1
4b(b − 1)

A4 = − 1
4c(2b − 1) A5 = 1

4 (1 − c2).
(40)

We want to find sufficient conditions for HN to be expressible as a quadratic combination
of the generators (29). From (39) it is clear that one such condition is A2 = 0, which yields
the following relation between the coupling constant g2 and the exponent a in the gauge factor
(37):

g2 = a(a − 1). (41)

The differential part of HN equals

−mcc̃+τ1 + cc̃+U1 mod bN+1 = −mcc̃+τ1 mod sl(N + 1). (42)

In cases 1–3, P(z) = z2 + ε with ε = 0,±1, and the last term in (39) can be expressed (up to
a constant) as

A5c̃
2
+

∑
k

z2
k + 2c̃+(A4 + c̃0A5) τ1 +

∑
k

ρ1zk + ρ0

Pk

(43)

for certain constants ρ0 and ρ1. It is then clear that the terms proportional to τ1 in (39) and
(42) must cancel, and the remaining terms in (43) must vanish, giving rise to the conditions

A5c̃+ = 0 (44)

ρ0 = ρ1 = 0 (45)

c̃+
[
(N − 1)(g1 − ac) − (

b + m + 1
2

)
c
] = 0. (46)

The analogous conditions for cases 4 and 5 (when P(z) = z and P(z) = 1, respectively) can
be found at the end of this section, when we discuss those cases in detail.

In particular, if c̃+ = 0 then the ‘quantization condition’ (46) is automatically satisfied and
the term proportional to the generator U1 in (42) vanishes (this also holds in cases 4 and 5), so
that in this case HN is a quadratic combination of operators belonging to the Borel subalgebra
of sl(N +1). Therefore, the condition c̃+ = 0 ensures the exact solvability of the potential (28).
The specific conditions for HN to be algebraic, together with the explicit form of the potential
(28), will be discussed on a case by case basis below. In all cases we shall impose that the
algebraic eigenfunctions of HN should be bound states, which will yield further restrictions
on the parameters in the potential (28).

For the reader’s convenience, all the exactly and quasi-exactly solvable potentials obtained
in the paper have been collected in two tables in appendix B. From equation (28), it is clear
that all of these potentials diverge when xj = xk . For this reason, we shall consider them to
be defined in the open set

xN < xN−1 < · · · < x1. (47)

Moreover, the finiteness of the mean kinetic energy of the algebraic eigenfunctions near the
hyperplanes xj = xk requires that a > 1

2 , so that g2 > − 1
4 in all cases. In cases 2 and 4 we

shall impose the additional restriction xk > 0 (1 � k � N ) to make the change of variables
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(7) one-to-one ((28) is generically singular at xk = 0 in these cases), so that the potential is
defined in the open subset

0 < xN < xN−1 < · · · < x1. (48)

This corresponds to choosing a fundamental chamber for the action of the Weyl group [7].
The following constants will be used throughout this section:

C± = cc̃± C0 = cc̃0 (49)

B = b + 1
2cc̃0 B− = b + cc̃−. (50)

3.1. Case 1. Pk = z2
k + 1, zk = sinh xk

It can be shown that a necessary and sufficient condition for all the wavefunctions in the
algebraic sector to be square-integrable is

c̃+ = 0 (51)

a(N − 1) + B + m < 0. (52)

Hence (44) and (46) are automatically satisfied, and the potential in this case is exactly solvable.
Conditions (45) reduce to(

B − 1
2

)2 = 1
4

(
1 + C2

−
)− η0 (53)

C−
(
B − 1

2

) = η1 (54)

where η0 and η1 are defined by

η0 = 1
4

(
c̃2
− − c̃2

0

)
η1 = 1

2 c̃0c̃−. (55)

The solution to the previous system becomes unique after imposing the square-integrability
condition (52), and is given by

B = 1
2

(
1 − √

s
)

C− = −2η1√
s

(56)

with

1
2 s = 1

4 − η0 +
√(

1
4 − η0

)2
+ η2

1. (57)

The potential (28) is in this case

VN(x) =
∑
k

(η0 + η1 sinh xk) sech2 xk + g2

∑
j =k

cosh2 xk

(sinh xj − sinh xk)2
(58)

which, after dropping the constant term g2N(N − 1)/2, can be expressed in the more familiar
form

VN(x) =
∑
k

(η0 + η1 sinh xk) sech2 xk +
g2

4

∑
j =k

[
csch2

(
xj − xk

2

)
− sech2

(xj + xk

2

)]
.

(59)

In the latter formula, η0 and η1 can be taken as arbitrary real parameters (cf (55)) restricted
only by the square-integrability condition (52), which can be written as

m < 1
2

(√
s − 1

)− a(N − 1) (60)
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with s defined by equation (57). The potential (59) is reminiscent of the SC model studied in
[27, 28].

The exactly solvable potential (59) will admit square-integrable algebraic eigenfunctions
if the inequality (60) can be satisfied by a non-negative integer m, i.e, if the right-hand side is
positive, which yields the restriction

s > [1 + 2a(N − 1)]2. (61)

The algebraic eigenfunctions (32) in this case have the form

ψ(x) = χ(τ)
∏
j<k

(
cosh

xj + xk

2

)a (
sinh

xj − xk

2

)a

×
∏
k

sech|B| xk exp
(

1
2C− arctan(sinh xk)

)
(62)

where a, B and C− are given by equations (41), (56) and (57). The function χ(τ) is a
polynomial eigenfunction of HN of degree �m in the symmetric variables τk , where m is the
largest non-negative integer satisfying (60).

The potential (59) is not, as it stands, one of Olshanetsky–Perelomov’s completely
integrable models. If we perform the imaginary translation xk �→ xk + iπ2 (1 � k � N ),
then (59) becomes

VN(x) = 1
4

∑
k

[
β+(β+ − 1)

sinh2 xk/2
− β−(β− − 1)

cosh2 xk/2

]

+
g2

4

∑
j =k

[
csch2

(xj + xk

2

)
+ csch2

(
xj − xk

2

)]
(63)

with

β± = B ∓ 1
2 iC− (64)

which is a completely integrable potential of BCN type. Note, however, that the coefficients
β±(β± − 1) are, generally speaking, complex for real values of B and C−. In fact, these
coefficients can be real only in two cases: (a) C− = 0 and (b) B = 1

2 . In the first case,
both parameters β± = B are real and equal, and (63) reduces to the well known completely
integrable potential of CN type

VN(x) = B(B − 1)
∑
k

csch2 xk +
g2

4

∑
j =k

[
csch2

(xj + xk

2

)
+ csch2

(
xj − xk

2

)]
. (65)

Indeed, in this case the algebraic eigenfunctions (62) reduce to

ψ(x) = χ(τ)
∏
j<k

(
sinh

xj + xk

2
sinh

xj − xk

2

)a∏
k

sinhB xk (66)

thus recovering the results in [7]. The second case is not interesting, since B = 1
2 implies

β±(β± − 1) = − 1
4 (1 + C2

−). (67)

Therefore, in this case the Hamiltonian is not self-adjoint, since the potential behaves as

− 1
4 (1 + C2

−)x
−2
k < − 1

4x
−2
k (68)

as xk → 0. Thus when C− = 0, i.e. when η1 = 0, the exactly solvable potential (59) does not
seem to be directly related to a root system.
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3.2. Case 2. Pk = z2
k − 1, zk = cosh xk

In this case, the square-integrability of the algebraic eigenfunctions requires that either

C+ < 0 (69)

or

C+ = 0 and a(N − 1) + B + m < 0 (70)

which leads to two different subcases, the first one consisting of QES and the second one of
ES potentials. We shall therefore discuss separately the two cases C+ < 0 and C+ = 0.

3.2.1. Case 2(a). C+ < 0. Conditions (44) and (45) reduce in this case to

c2 = 1 (71)

C+ + C− = 0 (72)

B(B − 1) = 1
4C

2
0 (73)

while condition (46) can be expressed as

c(N − 1)g1 = a(N − 1) + m + b + 1
2 . (74)

Imposing regularity of the wavefunctions on the hyperplanes xk = 0 forces a unique solution
to equation (73), given by

B = 1
2

(
1 +

√
1 + C2

0

)
. (75)

Taking into account equations (71)–(74), the potential (28) can be written as

VN(x) =
∑
k

[
1
4C

2
+ sinh2 xk + C+

(
a(N − 1) + B + m + 1

2

)
cosh xk + 1

4C
2
0 csch2 xk

]

+
g2

4

∑
j =k

[
csch2

(
xj + xk

2

)
+ csch2

(
xj − xk

2

)]
. (76)

This potential is quasi-exactly solvable, and it has dim Mm = (
m+N
m

)
algebraic eigenfunctions

of the form

ψ(x) = χ(τ)
∏
j<k

(
sinh

xj + xk

2
sinh

xj − xk

2

)a∏
k

(sinh xk)
B exp

(
1
2C+ cosh xk

)
(77)

where B is given by equation (75), and χ(τ) is a polynomial eigenfunction of HN of degree
�m in the symmetric variables τk . The potential (76) is regular on the hyperplanes xk = 0 if
and only if C0 = 0. In this case B = 1, and therefore the algebraic eigenfunctions (77) are
naturally extended as odd functions to the region

|xN | < |xN−1| < · · · < |x1| . (78)

A potential somewhat more general than (76) has been proved to be completely integrable
in the classical case by Inozemtsev and Meshcheryakov [29, 30]. Its quantum integrability
has been conjectured by the same authors in [20], although, to the best of our knowledge, no
proof of this fact has been given. We have shown in this section that the potential (76), which
belongs to the general class considered in [20], is quasi-exactly solvable. In fact, we shall
explicitly compute in section 5 some eigenfunctions and eigenvalues of the Hamiltonian with
potential (76) for m = 1 and N = 3 particles.
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3.2.2. Case 2(b). C+ = 0. In this case the potential (28), which is exactly solvable, can be
written as

VN(x) = 1
4

∑
k

[
η+ csch2

(xk
2

)
− η− sech2

(xk
2

)]

+
g2

4

∑
j =k

[
csch2

(xj + xk

2

)
+ csch2

(
xj − xk

2

)]
(79)

where

η± = 1
4 (c̃− ± c̃0)

2 � 0. (80)

Conditions (44) and (46) are now automatically satisfied, while (45) reduces to(
B − 1

2

)2 = 1
4

(
1 − C2

−
)

+ 1
2 (η+ + η−) (81)

C−
(
B − 1

2

) = 1
2 (η+ − η−). (82)

Introducing the parameters

β± = B ± 1
2C− (83)

the latter system reduces to

β±(β± − 1) = η± (84)

which uniquely determines β±. Indeed, the algebraic eigenfunctions in this case are of the
form

ψ(x) = χ(τ)
∏
j<k

(
sinh

xj + xk

2
sinh

xj − xk

2

)a∏
k

sinhβ+

(xk
2

)
coshβ−

(xk
2

)
(85)

where χ(τ) is a polynomial eigenfunction of HN of degree �m in the symmetric variables
τ . Therefore, β+ � 1

2 for the eigenfunctions to be regular (with finite kinetic energy) on the
hyperplanes xk = 0, while β− � − 1

2 is necessary for the square-integrability condition (70),
which now reads

1
2 (β+ + β−) + a(N − 1) + m < 0, (86)

to hold. Thus equations (84) have the unique solution

β± = 1
2

(
1 ±

√
1 + 4η±

)
(87)

from which it actually follows that β+ � 1 and β− � −1.
The exactly solvable potential (79) is known to be integrable [7], and is associated with

the root system BCN , when η+ = η−, or CN , when η+ = η−. The potential is regular on the
hyperplanes xk = 0 if and only if β+ = 1, in which case the algebraic eigenfunctions (85) are
naturally extended as odd functions to the region (78).

3.3. Case 3. Pk = z2
k, zk = exk

For the algebraic eigenfunctions to be square-integrable, one of the following three sets of
conditions must be satisfied:

(a) C+ < 0 C− > 0
(b) C+ = 0 C− > 0 a(N − 1) + B + m < 0
(c) C+ < 0 C− = 0 B > 0.

In principle, the first case yields a family of QES potentials and the remaining two cases a
family of ES ones. However, it can be shown that the potential in the third case can be obtained
from that in the second one by the reflection x �→ −x. We shall therefore consider only the
first two cases.
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3.3.1. Case 3(a). C+ < 0, C− > 0. Conditions (44) and (45) are satisfied if

c2 = 1 b = 1
2 (88)

and the quantization condition (46) can be written as

cg1(N − 1) = a(N − 1) + b + m + 1
2 . (89)

The potential (28) becomes in this case

VN(x) =
∑
k

[
1
4C

2
−e−2xk + 1

2C0C−e−xk + C+
(
a(N − 1) + 1

2C0 + m + 1
)
exk + 1

4C
2
+e2xk

]

+
g2

4

∑
j =k

csch2

(
xj − xk

2

)
. (90)

The quantum Hamiltonian (26) with potential (90) defined in the region (47) is quasi-exactly
solvable. It possesses

(
m+N
m

)
algebraic eigenfunctions of the form

ψ(x) = χ(τ)
∏
j<k

(
exj − exk

)a∏
k

exp
(

1
2 (C0 + 1)xk

)
exp

(
1
2 (C+exk − C−e−xk )

)
(91)

which can be written more conveniently as

ψ(x) = χ(τ)
∏
j<k

sinha
(
xj − xk

2

)

×
∏
k

exp
(

1
2 [C0 + a(N − 1) + 1]xk

)
exp

(
1
2 (C+exk − C−e−xk )

)
(92)

where χ(τ) is a polynomial eigenfunction of HN of degree �m in the symmetric variables τk .
The potential (90) with arbitrary constants multiplying each exponential has been shown

to be classically completely integrable in [29], but the explicit solutions of the equations of
motion could only be calculated when certain restrictions on the constants were imposed,
and only for a subset of initial conditions [31]. In the quantum case, no exact formulae
for the eigenfunctions and their corresponding energies are available when both the negative
and positive exponentials are present, although these models have been conjectured to also
be completely integrable in this case [20]. We have proved that for certain values of the
coefficients multiplying the exponentials the potential (90) is quasi-exactly solvable, and thus
some of its energies and eigenfunctions (in general, corresponding to excited states) can be
exactly computed. See section 5 for a concrete example when m = 1.

3.3.2. Case 3(b). C+ = 0, C− > 0. The conditions (44) and (45) lead again to (88), but now
the quantization condition (46) is absent. The potential can be simply obtained by making
C+ = 0 in (90):

VN(x) =
∑
k

[
1
4C

2
−e−2xk + 1

2C0C−e−xk
]

+
g2

4

∑
j =k

csch2

(
xj − xk

2

)
. (93)

Note that this potential depends effectively only on one parameter, since the ratio |C−/C0|
can be assigned any prescribed positive value by performing a suitable translation of the
coordinates. The same argument shows that the discrete spectrum of the potential (93) cannot
depend on C−.

The quantum Hamiltonian (26) with potential (93) is exactly solvable. It describes an
external Morse potential acting on each particle, plus an AN -type hyperbolic interaction. The
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discrete spectrum of this potential has been computed by Inozemtsev and Meshcheryakov [20],
by relating (93) to the integrable BCN potential (79) through a certain formal limit.

The square-integrability of the algebraic eigenfunctions is ensured if equation (52) holds
or, taking into account (88),

C0 + 2a(N − 1) + 2m + 1 < 0. (94)

This inequality can be satisfied for non-negative integer values of m provided that

C0 + 2a(N − 1) + 1 < 0. (95)

In particular, note that the latter inequality implies that C0 is negative, and therefore the
coefficient of e−xk in the potential is negative as well. The algebraic eigenfunctions are given
in this case by

ψ(x) = χ(τ)
∏
j<k

sinha
(
xj − xk

2

)∏
k

exp
(

1
2 [C0 + a(N − 1) + 1]xk − 1

2C−e−xk
)

(96)

where χ(τ) is a polynomial eigenfunction of HN of degree �m in τ , with m being the largest
non-negative integer compatible with (94).

The limit C− = 0 corresponds to a well known integrable potential associated with the
AN root system [17], namely

VN(x) = 1
4a(a − 1)

∑
j =k

csch2

(
xj − xk

2

)
(97)

whose algebraic eigenfunctions are no longer normalizable (indeed, this potential is known to
have no bound states [7]).

3.4. Case 4. Pk = zk, zk = x2
k /4

The algebraic eigenfunctions will be square-integrable provided that

C+ < 0 (98)

or

C+ = 0 C0 < 0. (99)

Conditions (44)–(46) must be modified in this case (since P is no longer quadratic), but after
applying similar considerations it can be shown that the operator HN is algebraic provided
that

c2 = 1 (100)

B−(B− − 1) = C2
− (101)

C+
[
(a − cg1)(N − 1) + m + 1

2b + 3
4

] = 0. (102)

The potential is given by

VN(x) =
∑
k

[
η2

0x
6
k + η1x

4
k + η2x

2
k +

η3

x2
k

]
+ g2

∑
j =k

[
1

(xj + xk)2
+

1

(xj − xk)2

]
(103)
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where

η0 = −C+

16
η1 = C0C+

32

η2 = C2
0

16
+
C+

4

[
a(N − 1) + m + 1

2B− + 3
4

]
(104)

η3 = C2
− � 0

and

B− = 1
2

(
1 +

√
1 + 4η3

)
. (105)

(We have taken the positive square root to ensure that the algebraic eigenfunctions are regular
when xk → 0.) When C+ = 0 the potential (103) is quasi-exactly solvable. The coefficients
in the potential are not all independent in this case, but satisfy the relation

η2 = η2
1

4η2
0

− 4η0
[
a(N − 1) + m + 1

2B− + 3
4

]
. (106)

The algebraic eigenfunctions are of the form

ψ(x) = χ(τ)
∏
j<k

(
x2
j − x2

k

)a∏
k

x
B−
k exp

(
1

4η0
(η2

0x
4
k + η1x

2
k )
)

(107)

where B− is given by (105), and χ(τ) is a polynomial eigenfunction of HN of degree �m

in τ . This QES potential has been recently obtained in somewhat less generality by Hou and
Shifman [19].

If C+ = 0 then the potential (103) becomes exactly solvable, and assumes the simpler
form

VN(x) =
∑
k

(
ω2

4
x2
k +

η3

x2
k

)
+ g2

∑
j =k

[
1

(xj + xk)2
+

1

(xj − xk)2

]
(108)

where now the parameters ω ≡ 2
√
η2 = |C0| /2 > 0 and η3 � 0 are independent. The

algebraic eigenfunctions are in this case

ψ(x) = χ(τ)
∏
j<k

(
x2
j − x2

k

)a∏
k

x
B−
k exp

(−ω
4 x

2
k

)
(109)

where B− and χ(τ) are as before. This potential is well known to be integrable [7], and is
commonly known as a rational BN -type potential with harmonic force.

The potentials (103)–(108) are regular on the hyperplanes xk = 0 provided that η3 = 0,
or, equivalently, B− = 1. By (107)–(109), in this case the algebraic eigenfunctions can again
be extended as odd eigenfunctions to the region (78).

Following the idea of Minzoni et al [32], we can obtain a different QES deformation of
the ES potential (108). Note that the gauge Hamiltonian HN in this case can be written as

HN = h(1) + h(2)

where

h(1) = −τ1∂
2
τ1

− (A + C0τ1)∂τ1 (110)

A ≡ N
[
B− + 1

2 + a(N − 1)
]

(111)

depends only on τ1, and

h(2)φ(τ1) = 0.
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If we consider eigenfunctions χ of HN depending only on τ1 then the problem reduces to the
one-dimensional equation

−τ1χ
′′ − (A + C0τ1)χ

′ = Eχ. (112)

If we add a function U(τ1) to the potential (108), we can still look for eigenfunctions of HN

depending only on τ1, which must satisfy the equation

τ1χ
′′ + (A + C0τ1)χ

′ + [E − U(τ1)]χ = 0. (113)

A wide class of exact solutions of (113) is obtained when the operator h = h(1) + U(τ1) is
equivalent under a gauge transformation to a quasi-exactly solvable operator on the line. The
most general such operator equivalent to h must be of the form

h̄ = −τ1∂
2
τ1

+ (2γ τ 2
1 + βτ1 + α)∂τ1 − 2nγ τ1 + E0 (114)

where E0 is a constant and n is a non-negative integer [26]. The latter operator leaves invariant
the space of polynomials in τ1 of degree not greater than n, and consequently admits n + 1
algebraic eigenfunctions. For h and h̄ to be equivalent we must have

h̄ = e−f (τ1)hef (τ1). (115)

From this relation we obtain the equations

2τ1f
′ + A + C0τ1 = − (

2γ τ 2
1 + βτ1 + α

)
(116)

τ1(f
′′ + f ′2) + (A + C0τ1)f

′ − U = 2nγ τ1 − E0 (117)

from which we easily obtain

f = − 1
2

[
γ τ 2

1 + (β + C0)τ1 + (A + α) log τ1
]

(118)

and (after dropping a constant term)

U(τ1) = γ 2τ 3
1 + βγ τ 2

1 + 1
4

[
β2 − C2

0 + 4γ (α − 2n − 1)
]
τ1 − (A − α − 2)(A + α)

4τ1
. (119)

If we define

r2 =
∑
k

x2
k = 4τ1

then we have shown that the N -particle potential

ṼN (x) = VN(x) + U(r2/4)

= Ãr6 + B̃r4 + C̃r2 +
D̃

r2
+ B−(B− − 1)

∑
k

1

x2
k

+ a(a − 1)
∑
j =k

[
1

(xj + xk)2
+

1

(xj − xk)2

]
(120)

with

Ã = γ 2

64
C̃ = 1

16

[
β2 + 4γ (α − 2n − 1)

]
(121)

B̃ = βγ

16
D̃ = −(A − α − 2)(A + α) (122)
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possesses n + 1 algebraic eigenfunctions of the form

ψk(x) = r−(A+α) exp

(
− γ

32
r4 − β

8
r2

)
σk(r

2/4)
∏
j<k

(x2
j − x2

k )
a
∏
k

x
B−
k (123)

where σk(τ1) is a polynomial eigenfunction of h̄ of degree less than or equal to n. These
eigenfunctions are square-integrable and regular at the origin provided that

γ > 0 (or γ = 0 and β > 0) α > 1
2N B− > 1

2 . (124)

3.5. Case 5. Pk = 1, zk = xk

The conditions for HN to be algebraic reduce in this case to

A5c̃+ = A5c̃0 = 0. (125)

On the other hand, the necessary and sufficient conditions for the algebraic eigenfunctions to
be square-integrable are

C+ = 0 C0 < 0. (126)

Hence the all potentials in this class are exactly solvable. From equations (125) and (126) it
follows that c2 = 1, so that the potential (39) reduces to the celebrated Calogero model

VN(x) = ω2
∑
k

x2
k + g2

∑
j =k

1

(xj − xk)2
(127)

with

ω = 1
2 |C0| > 0. (128)

(To obtain the previous formula, we have performed a constant translation to get rid of the
irrelevant parameter C−.) The algebraic eigenfunctions are of the form

ψ(x) = χ
(
τ(x)

)∏
j<k

(xj − xk)
a
∏
k

e− 1
2ωx

2
k (129)

where the functions χ(τ) are polynomial eigenfunctions of HN , known in the literature as the
Calogero polynomials.

4. Energy spectrum

In this section we shall obtain an explicit expression for the energy spectrum of all the ES
models derived in the previous section, discussing some of its basic properties. The key idea
in this respect is to show that the ES Hamiltonians preserve not only the subspaces Mk , but
also the smaller subspaces M̂k . We shall then define a lexicographic ordering of the basis
elements within each subspace M̂k ensuring that the matrix of the restriction of HN to M̂k

is triangular. The spectrum of Hk , and therefore that of HN , will thus simply consist of the
diagonal elements of these matrices for k = 0, 1, 2, . . . .
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4.1. Cases 1–3

The gauge Hamiltonian (38) corresponding to the ES Hamiltonians with potential (59), (79)
and (93) can be written as

HN(z) = E0 −
∑
k

(z2
k + ε)∂2

zk
−
∑
k

[
(2B + 1)zk + C−

]
∂zk − 2a

∑
j =k

z2
k + ε

zkj
∂zk (130)

where ε = 1,−1, 0, respectively, and

E0 = −N
{[
B + 1

2a(N − 1)
]2

+ 1
12a

2(N2 − 1)
}
. (131)

For the potentials (59) and (79) B and C− are given by equations (56)–(57) and (83),
respectively, while B = 1

2 (C0 + 1) for the potential (93) on account of (88). The expression
of HN in terms of the symmetric variables is easily found to be

HN = E0 −
∑
i,j

A
(2)
ij ∂τi ∂τj − (2B + 1)

∑
j

jτj ∂τj − a
∑
j

j (2N − j − 1)τj ∂τj

−C−
∑
j

(N − j + 1)τj−1∂τj

+ε

(
−
∑
ij

A
(0)
ij ∂τi ∂τj + a

∑
j

(N − j + 1)(N − j + 2)τj−2∂τj

)
(132)

where the coefficients A(p)

ij can be found in appendix A.

It follows from the latter expression and the structure of the coefficients A(p)

ij that HN

preserves the subspaces

M̂k =
k⊕

j=0

Lj

for arbitrary k, where

Lj = span

{
τ
l1
1 τ

l2
2 . . . τ

lN
N :

N∑
i=1

ili = j

}
.

In fact, the first line of (132) leaves the subspace Lk invariant, while the second and third lines
take an element of Lk into Lk−1 and Lk−2, respectively.

We now introduce an ordering of the basis of M̂k consisting of monomials. First of all, we
declare the monomials belonging to Lj to be less than those in Lk if j < k. Within each Lj , the
ordering is then defined as follows: if the monomial τ l11 . . . τ

lN
N is denoted by the multi-index

l ≡ (l1, l2, . . . , lN ), then

l < l′ if lN = l′N lN−1 = l′N−1, . . . , li+1 = l′i+1 li > l′i . (133)

Thus, for instance, τj < τ1τj−1 < · · · < τ
j−2
1 τ2 < τ

j

1 .
Given this ordering of the basis, it is straightforward to check that the matrix HN |M̂k

is
upper triangular. Its diagonal elements

El1l2...lN = E0 −
(∑

i

ili

)[
2B + a(2N − 1) +

∑
i

li

]
+ a

∑
i

i2li (134)
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therefore give the energy spectrum of HN , and hence of HN . The spectrum consists of a term

E0 − [2B + a(2N − 1)]
∑
i

ili

which is constant over Lj , while the remaining two terms split the energies within this subspace,
although, in general, they do not remove all degeneracy. It can be proved with the aid of the
square-integrability condition that the lowest energy corresponding to each block Lj is Ej0...0,
while the highest one is E0...1...r , where the 1 is in the pth position, and j = Nr + p with
1 � p � N − 1. This easily implies that the lowest energy in each block Lj is lower than the
lowest energy in the next block Lj+1. In particular, the first excited state always lies in M̂1

(since dim M0 = 1), and can thus be exactly computed for any number of particles. On the
other hand, some energies in Lj+1 might be lower than those of Lj . Note also that the formula
(134) for the eigenvalues of the Hamiltonian with potential (79) and (93) agrees with but is
considerably simpler than that given in [20].

The spectrum of the three ES potentials (59), (79) and (93) is the same when expressed in
terms of B and C−, although B and C− are differently related to the parameters appearing in
these potentials. Due to the triangular nature of the matrix representing HN in M̂k , it should
not be difficult to give recursive expressions for the eigenfunctions, though we postpone this
task for a future work.

4.2. Cases 4 and 5

The spectrum of the potentials (108) and (127) is highly degenerate, since in this case the
energy El1...lN is easily seen to depend only on the single quantum number j = ∑N

i=1 ili .
More precisely, using the explicit expression (38) for the gauge Hamiltonian and passing to
the symmetric variables it is straightforward to show that

Ej = E0 + 2ωj j = 0, 1, 2, . . . (135)

where the ground state energy E0 is given, respectively, by

E
(4)
0 = 1

2N [1 + 2B− + 2a(N − 1)]ω (136)

E
(5)
0 = N [1 + a(N − 1)]ω. (137)

We have thus rederived (albeit making no use of the underlying root systems) the well known
result that the energy levels in these models are equally spaced [7].

5. Examples

5.1. ES potential from case 1

For the ES potential (59)

VN(x) =
∑
k

(η0 + η1 sinh xk) sech2 xk +
g2

4

∑
j =k

[
csch2

(
xj − xk

2

)
− sech2

(xj + xk

2

)]

(138)

the gauge Hamiltonian in the symmetric variables is given explicitly by

HN = −
∑
i,j

[
jτiτj +

j∑
k=1

(j − i − 2k)τi+kτj−k

]
∂τi ∂τj
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−
∑
i,j

[
(N − i + 1)τi−1τj−1 −

j−1∑
k=1

(i − j + 2k)τi+k−1τj−k−1

]
∂τi ∂τj

−
∑
j

j [2B + 1 + a(2N − j − 1)] τj ∂τj − C−
∑
j

(N − j + 1)τj−1∂τj

+a
∑
j

(N − j + 1)(N − j + 2)τj−2∂τj + E0 (139)

where B, C− and E0 are given by equations (56), (57) and (131), respectively. We know
from the previous section that the gauge Hamiltonian (139) preserves each subspace M̂k for
arbitrary k. For instance, the restriction of HN to M̂2 has the following matrix with respect
to the basis

{
1, τ1, τ2, τ

2
1

}
of M̂2:


E0 −NC− aN(N − 1) −2N

0 E0 + 1 − β −(N − 1)C− −2NC−
0 0 E0 + 2(a − β + 1) 4

0 0 0 E0 − 2β


 (140)

where we have set

1
2β = a(N − 1) + B + 1 < −1. (141)

(The latter inequality is obtained by imposing the square-integrability of the algebraic
eigenfunctions belonging to M̂2.) We can exactly compute four eigenfunctions of the potential
(138) with their corresponding energies by diagonalizing the matrix (140). The energies are
simply the eigenvalues of this matrix, namely its diagonal elements

E0

E1 = E0 − β + 1

E2 = E0 − 2β

E3 = E0 + 2(a − β + 1).

The corresponding eigenfunctions are given by

ψi = µχi 0 � i � 3 (142)

where

µ =
∏
j<k

(
cosh

xj + xk

2
sinh

xj − xk

2

)a∏
k

(sech xk)
|B|e

1
2C− arctan(sinh xk) (143)

and

χ0 = 1 (144)

χ1 = τ1 +
NC−
β − 1

(145)

χ2 = τ 2
1 − 2τ2

a + 1
+

2C−(Na + 1)

(a + 1)(β + 1)
τ1 +

N(aN + 1)(C2
− + β + 1)

β(a + 1)(β + 1)
(146)

χ3 = τ2 +
C−(1 − N)

2a − β + 1
τ1 +

N(N − 1)(2a2 − aβ + a + C2
−)

2(a − β + 1)(2a − β + 1)
(147)
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with

τ1 =
∑
k

sinh xk τ2 =
∑
j<k

sinh xj sinh xk. (148)

Note that, since ψ0 = µ has no zeros in the configuration space (47), it is the ground state of
the system. We have thus been able to exactly compute some eigenvalues and eigenfunctions
of the potential (138) for an arbitrary number of particles N .

5.2. QES potential from case 2

For simplicity, we shall restrict the number of particles to N = 3 and set m = 1 to find four
eigenvalues of the potential (76)

V3(x) =
3∑

k=1

[
B(B − 1) csch2 xk +

C2
+

4
sinh2 xk + C+

(
2a + B + 3

2

)
cosh xk

]

+
a(a − 1)

4

3∑
j,k=1
j =k

[
csch2

(xj + xk

2

)
+ csch2

(
xj − xk

2

)]
(149)

which can be thought of as a deformation of a CN -type hyperbolic potential. The gauge
Hamiltonian H 3 = µ−1H3µ can be written as

−
3∑

k=1

(z2
k − 1)∂2

zk
−

3∑
k=1

[(2B + 1)zk + C+(z
2
k − 1)]∂zk − 2a

3∑
j,k=1
j =k

z2
k − 1

zk − zj
∂zk + C+

3∑
k=1

zk + ε0

where zk = cosh xk ,

µ =
∏

1�j<k�3

(
sinh

xj + xk

2
sinh

xj − xk

2

)a 3∏
k=1

(sinh xk)
B exp

(
1
2C+ cosh xk

)
(150)

and

ε0 = − (
3B2 + 6aB + 5a2

)
. (151)

When expressed in terms of the symmetric variables, the operator H 3 has been shown in
section 3 to leave invariant the subspace

M1 = span {1, τ1, τ2, τ3}.
The restriction of H 3 to this subspace is given explicitly by

H 3|M1 = −
3∑

j=1

[2B + 1 + a(5 − j)]jτj ∂τj − C+

3∑
j=1

[τ1τj − (j + 1)τj+1]∂τj

+C+

3∑
j=1

(4 − j)τj−1∂τj − a

3∑
j=1

(5 − j)(4 − j)τj−2∂τj + C+τ1 + ε0.

The spectral problem forH 3 in the subspace M1 thus reduces to diagonalizing the 4×4 matrix
of H 3|M1 with respect to the basis {1, τ1, τ2, τ3}, given by


ε0 3C+ −6a 0

C+ ε0 − β − 2a 2C+ −2a

0 2C+ ε0 − 2β − 2a C+

0 0 3C+ ε0 − 3β
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with

β = 2(a + B) + 1.

The eigenfunctions of H 3|M1 are

χj (τ ) = kj0 + kj1τ1 + kj2τ2 + τ3 0 � j � 3

where

kj0 = 1

2C+Ej
[
(Ej − 2a + 2β)(Ej + 3β) − 3C2

+

]

kj1 = 1

6C2
+

[
(Ej + 2a + 2β)(Ej + 3β) − 3C2

+

]

kj2 = Ej + 3β

3C+

and Ej is one of the four roots of the characteristic polynomial

E4 + 2(2a + 3β)E3 + (4a2 + 18aβ + 11β2 − 10C2
+)E2

+6(β3 + 3aβ2 + 2a2β + 2aC2
+ − 5βC2

+)E + 9C2
+(−2β2 + 2aβ + C2

+).

The corresponding eigenfunctions ψj(x) = µ(z) χj (τ ) (0 � j � 3) of H3 have energy
Ej = Ej + ε0. If the parameters a, B and C+ take the values

a = 2 B = 3
2 C+ = −1

compatible with the square-integrability of the algebraic eigenfunctions, then the eigenvalues
can be calculated numerically:

E0 = −69.7926

E1 = −64.1121

E2 = −56.4954

E3 = −44.5999.

The gauge part of the algebraic eigenfunctions is given by

χ0(τ ) = 0.211 595 + 0.376 202τ1 + 0.347 522τ2 + τ3

χ1(τ ) = −0.959 207 − 0.006 943 38τ1 − 1.545 96τ2 + τ3

χ2(τ ) = 0.005 093 79 + 16.3594τ1 − 4.084 86τ2 + τ3

χ3(τ ) = −967.257 + 80.6047τ1 − 8.050 04τ2 + τ3.

Since the symmetric variables

τ1 = cosh x1 + cosh x2 + cosh x3

τ2 = cosh x1 cosh x2 + cosh x1 cosh x3 + cosh x2 cosh x3

τ3 = cosh x1 cosh x2 cosh x3

are all positive, χ0, and therefore ψ0, does not vanish in the region (48). This shows that ψ0 is
the ground state of the potential (149).

In the QES cases we are able to compute a few energies and their corresponding
eigenfunctions algebraically, but we know nothing about the rest of the spectrum. In fact,
it is natural to expect that the potential of this example has some levels between those we have
obtained.
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5.3. ES potential from case 3

For the ES potential (93)

VN(x) =
∑
k

[
C2

−
4

e−2xk + 1
2C0C−e−xk

]
+
g2

4

∑
j =k

csch2

(
xj − xk

2

)
(152)

the gauge Hamiltonian in the symmetric variables is given by

HN = −
∑
i,j

[
jτiτj +

j∑
k=1

(j − i − 2k)τi+kτj−k

]
∂τi ∂τj

−
∑
j

j [2B + 1 + a(2N − j − 1)] τj ∂τj − C−
∑
j

(N − j + 1)τj−1∂τj + E0

(153)

with

B = 1
2 (C0 + 1) (154)

andE0 given by (131). The gauge Hamiltonian (153) preserves each subspace M̂k for arbitrary
k. For instance, the restriction of HN to M̂2 has the following matrix with respect to the basis{
1, τ1, τ2, τ

2
1

}
of M̂2:


E0 −NC− 0 0

0 E0 + 1 − β −(N − 1)C− −2NC−
0 0 E0 + 2(a − β + 1) 4

0 0 0 E0 − 2β


 (155)

where β is defined by equations (141) and (154). By diagonalizing this matrix, we can again
exactly compute four eigenfunctions with their corresponding energies for the multiparticle
potential (152). The energies can be simply read off the diagonal elements of the matrix
(155), and coincide with those of the previous example (with B now given by (154)). The
corresponding eigenfunctions are given by

ψi = µχi 0 � i � 3 (156)

where

µ =
∏
j<k

sinha
(
xj − xk

2

)
exp

{∑
k

[
1
2

(
C0 + 1 + a(N − 1)

)
xk − 1

2C−e−xk
]}

(157)

and

χ0 = 1 (158)

χ1 = τ1 +
NC−
β − 1

(159)

χ2 = τ 2
1 − 2τ2

a + 1
+

2C−(Na + 1)

(a + 1)(β + 1)
τ1 +

N(aN + 1)C2
−

β(a + 1)(β + 1)
(160)

χ3 = τ2 +
C−(1 − N)

2a − β + 1
τ1 +

N(N − 1)C2
−

2(a − β + 1)(2a − β + 1)
(161)
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with

τ1 =
∑
k

exk τ2 =
∑
j<k

exj+xk . (162)

Again, ψ0 = µ has no zeros in the configuration space (47), and is therefore the ground state
of the system. As in the previous example, we have exactly computed some eigenvalues and
eigenfunctions of the potential (152) for an arbitrary number of particles.

5.4. QES potential from case 3

As a final example, consider the QES potential (90) with m = 1

VN(x) =
∑
k

[
1
4C

2
−e−2xk + 1

2C0C−e−xk + C+
(
a(N − 1) + 1

2C0 + 2
)
exk + 1

4C
2
+e2xk

]

+ 1
4g2

∑
j =k

csch2

(
xj − xk

2

)
. (163)

The restriction of the gauge Hamiltonian HN to the subspace

M1 = span {1, τ1, . . . , τN }
is given in terms of the symmetric variables τj by the following expression:

HN |M1 = ε0 + C+τ1

(
1 −

∑
j

τj ∂τj

)
+ C+

∑
j

(j + 1)τj+1∂τj

−
∑
j

[C0 + a(2N − j − 1) + 2] jτj ∂τj − C−
∑
j

(N − j + 1)τj−1∂τj (164)

with

ε0 = −N

4

[(
C0 + a(N − 1) + 1

)2
+
a2

3
(N2 − 1) + 2C−C+

]
. (165)

The matrix
(
hij
)

0�i,j�N
of HN |M1 with respect to the basis {1 ≡ τ0, τ1, . . . , τN } of M1 is

therefore tridiagonal, with non-trivial elements

hj,j−1 = jC+ hj,j+1 = −C−(N − j) (166)

hjj = ε0 − j [C0 + a(2N − j − 1) + 2] ≡ hj . (167)

The tridiagonal character of the matrix
(
hij
)

has important consequences for the calculation
of the eigenfunctions of HN lying in M1. Indeed, if we write one such eigenfunction with
eigenvalue E as

χE(τ) =
N∑
j=0

π̃j (E)τj (168)

it follows from equations (166) and (167) that the coefficients π̃j (E) satisfy the following
relations:

jC+π̃j−1(E) + (hj − E)π̃j (E) − C−(N − j)π̃j+1(E) = 0 j = 0, 1, 2, . . . , N (169)

where we can take π̃−1 = 0 and, without loss of generality, π̃0 = 1. Let us now regard the
energy E in equation (169) as a real variable, and let us consider the recurrence relation (169)
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for arbitrary values of j ∈ N. Following the usual procedure, we introduce new normalized
coefficients πj (E) through the formula

πj (E) = N !

(N − j)!
(−C−)j π̃j (E). (170)

Note that π̃0(E) = 1 implies thatπ0(E) = 1. The coefficientsπj (E) then satisfy the following
three-term recurrence relation in canonical form:

πj+1(E) = (E − hj )πj (E) − αjπj−1(E) (171)

with

αj = −j (N − j + 1)C−C+. (172)

The functions πj (E) defined by the latter relation with the initial conditions π−1(E) = 0,
π0(E) = 1 are monic polynomials of degree j . It is well known that the canonical form of
the recurrence relation (172) entails that the polynomials πj (E) are an orthogonal family with
respect to a suitably defined weight functional [33]. Furthermore, the fact that the coefficient
αj vanishes for j = N + 1 implies that this functional is not positive definite; in fact, the
polynomials πj with j � N + 1 must have zero norm. Therefore, the polynomial family{
πj (E)

}
j�0 is weakly orthogonal, cf [33]. We have thus associated in a natural way a weakly

orthogonal polynomial family to the QES many-body potential (163). Recall, in this respect,
that it is possible to construct a weakly orthogonal polynomial family for (almost) every QES
one-particle potential on the line [34].

Going back to the calculation of the eigenfunctions of HN belonging to M1, note first of
all that their energies are the zeros of the critical polynomial πN+1(E). This can be seen, for
instance, by observing that the j th principal minor δj (E) of the matrix E − (hij ) satisfies the
same recurrence relation as πj (E), with the same initial conditions, so that

δj (E) = πj (E) (173)

and, in particular,

δN+1(E) = det
(
E − (hij )

) = πN+1(E). (174)

Since C+C− < 0 for the potential (163), it follows from (172) that αj is positive for
j = 1, 2, . . . , N . This implies [35], that the critical polynomial πN+1(E) hasN +1 distinct real
roots E0 < E1 < · · · < EN . By the previous equation, the spectrum of the restriction of HN

to M1 consists of the N + 1 real eigenvalues E0 < · · · < EN . The respective (unnormalized)
eigenfunctions χi ≡ χEi

are given by

χi(τ ) = 1 +
1

N !

N∑
j=1

(−1)j
(N − j)!

C
j
−

πj (Ei)τj (175)

where the coefficients πj (Ei) are calculated either from the recurrence relation (171) (for
E = Ei), or by computing the minors δj (Ei). The corresponding eigenfunctions of the
physical Hamiltonian HN are obtained by multiplying each function χi in (175) by the gauge
factor

µ =
∏
j<k

sinha
(
xj − xk

2

)
exp

{
1
2

∑
k

[(
C0 + a(N − 1) + 1

)
xk + C+exk − C−e−xk

]}
. (176)
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We can also express the eigenvalues of HN |M1 and their eigenfunctions using continued
fractions, by working with the quotients

qj (E) = πj (E)

πj−1(E)
j = 1, 2, . . . . (177)

Then equation (171) becomes

qj+1(E) = E − hj − αj

qj (E)
(178)

from which we immediately obtain the continued fraction expansion

qj+1(E) = E − hj − αj

E − hj−1−
αj−1

E − hj−2− · · · α2

E − h1−
α1

E − h0
. (179)

The eigenvalue equation in this formalism can be obtained by imposing the vanishing of
qN+1(E) (since it is proportional to πN+1(E), by equation (177)), that is

E − hN = αN

E − hN−1 −
αN−1

E − hN−2 − · · · α2

E − h1 −
α1

E − h0
. (180)

Alternatively, solving equation (178) for qj we obtain

qj (E) = αj

E − hj − qj+1(E)
(181)

and an equivalent form of the eigenvalue equation (180) follows by expressing q1(E) = E−h0

as a continued fraction:

E − h0 = α1

E − h1 −
α2

E − h2 − · · · αN−1

E − hN−1 −
αN

E − hN
(182)

(since qN+1(E) vanishes if and only if E is an eigenvalue). The eigenfunctions are still given
by (175), where of course now

πj (E) =
j∏

i=1

qi(E). (183)

Consider, as an example, the potential (163) with N = 3 particles, for which

ε0 = − 3
4 (C0 + 2a + 1)2 − 2a2 − 3

2C−C+. (184)

The eigenfunctions of H 3|M1 can be expressed as

χj (τ ) = 1 + kj1τ1 + kj2τ2 + kj3τ3 (185)

where the coefficients kjl = π̃l(Ej ) are given by

kj1 = − Ej
3C−

(186)

kj2 = 1

6C2−

[E2
j + (2a + β)Ej + 3C−C+

]
(187)

kj3 = − 1

6C3−

[E3
j + (4a + 3β)E2

j + (4a2 + 6aβ + 2β2 + 7C−C+)Ej + 6(a + β)C−C+
]
. (188)

In the latter equations we have set

β = 2a + C0 + 2 (189)
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and Ej = Ej − ε0 is one of the roots of the polynomial

π4(E + ε0) = E4 + (4a + 6β)E3 + (4a2 + 18aβ + 11β2 + 10C−C+)E2

+6
(
β(2a2 + 3aβ + β2) + (2a + 5β)C−C+

)E + 9C−C+
(
2β(a + β) + C−C+

)
.

(190)

For instance, if the parameters in the potential are given by

a = 2 C− = 2 C0 = 1 C+ = −1 (191)

then

ε0 = −32

and

E0 = −54.5584

E1 = −49.5497

E2 = −42.4323

E3 = −31.4596.

The eigenfunctions of H 3 in M1 are

χ0(τ ) = 1 + 3.759 74τ1 + 10.6142τ2 + 20.4323τ3

χ1(τ ) = 1 + 2.924 95τ1 + 4.5394τ2 − 3.946 97τ3

χ2(τ ) = 1 + 1.738 71τ1 − 0.496 778τ2 + 0.141 027τ3

χ3(τ ) = 1 − 0.090 071τ1 + 0.009 864 37τ2 − 0.001 373 84τ3.

Since the symmetric variables, given in this case by (162) and

τ3 =
∑
i<j<k

exi+xj+xk (192)

are all positive, the function ψ0 = µχ0 is once again the ground state of the Hamiltonian H3.

6. Summary and conclusions

We have used Calogero’s construction of classical solvable many-body systems and applied it
to the most general one-particle quasi-exactly solvable normalizable Schrödinger operator
in the line. The corresponding quantum many-body Hamiltonians have been shown to
have an algebraic structure that enables one to compute part or all of their spectrum by
straightforward algebraic means. In all cases, if the one-particle seed potential is ES (QES)
then the corresponding many-body potential constructed from it is also ES (QES).

The QES examples include a generalization of the sextic deformation of Olshanetsky–
Perelomov’s BN rational model found recently in [19], as well as some new deformations of
the standard hyperbolic BCN potential. We have also found an additional QES deformation
of the BN rational model not related to that considered in [19].

The ES cases includeAN andBN rational models with harmonic force and some hyperbolic
OP potentials of BCN type, as well as the AN hyperbolic model with an external Morse
potential discussed by Inozemtsev and Meshcheryakov [20]. Since we have only looked for
Hamiltonians having bound states, the models with no discrete spectrum treated in [7] do not
appear in this work. Although in this paper we have considered for simplicity non-periodic
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seed potentials [36], this approach is applicable to periodic potentials as well. In fact, this
method has been applied successfully in [24] to construct a QES elliptic BN potential. In the
future we plan to perform a similar analysis on all the periodic seed potentials.

The ES problems have the additional feature that their associated gauge Hamiltonian HN

preserves not only the subspaces Mk but the smaller subspaces M̂k defined by (34). This
implies that the number of particles N represents no difficulty in these cases, and allows us to
calculate some levels and eigenfunctions for arbitrary N . Moreover, we have shown that an
ordered basis in each subspace M̂k can be chosen so that the action of HN is triangular.
Consequently, the diagonal terms automatically give the discrete spectrum, and recursive
expressions for the eigenfunctions can, in principle, be written.

It should be stressed that the results we have obtained depend greatly on the ansatz (37)
for the gauge factor µ. Our ansatz has been chosen by analogy with the one-particle case, but
it is clear that more general ansätze could lead to more general results. In his recent work [37],
Calogero investigates a very general ansatz which gives rise to higher-body interactions. A
systematic analysis of this method should focus on the analysis of the equivalence problem,
i.e. when a differential operator constructed from quadratic combinations of the generators of
a Lie algebra is equivalent to a Schrödinger operator [36].
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Appendix A. The symmetric variables

The following expressions are useful in the transition from the canonical coordinates z to the
symmetric variables τ (all indices run from 1 to N , with the restrictions indicated under the
summation symbol):

?
(p)

1 ≡
∑
k =j

z
p

k

zk − zj

?
(0)
1 = 0 (A1)

?
(1)
1 = 1

2N(N − 1) (A2)

?
(2)
1 = (N − 1)τ1 (A3)

?
(p)

2 ≡
∑

j =k =l =j

z
p

k

(zk − zj )(zk − zl)

?
(0)
2 = ?

(1)
2 = 0 (A4)

?
(2)
2 = 1

3N(N − 1)(N − 2). (A5)

The following expressions are useful to express differential operators in terms of the
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symmetric variables (it is understood that τk = 0 for k > N + 1):∑
j

z
p

j ∂zj =
∑
j

B
(p)

j ∂τj

B
(0)
j = (N − j + 1)τj−1 (A6)

B
(1)
j = jτj (A7)

B
(2)
j = τ1τj − (j + 1)τj+1 (A8)

∑
k

z
p

k ∂
2
zk

=
∑
i,j

A
(p)

ij ∂τi ∂τj

A
(0)
ij = (N − i + 1)τi−1τj−1 −

j−1∑
k=1

(i − j + 2k)τi+k−1τj−k−1 (A9)

A
(1)
ij =

j−1∑
k=0

(i − j + 2k + 1)τi+kτj−k−1 (A10)

A
(2)
ij = jτiτj +

j∑
k=1

(j − i − 2k)τi+kτj−k (A11)

2
∑
j =k

z
p

k

zk − zj
∂zk =

∑
j

C
(p)

j ∂τj

C
(0)
j = −(N − j + 1)(N − j + 2)τj−2 (A12)

C
(1)
j = (N − j)(N − j + 1)τj−1 (A13)

C
(2)
j = j (2N − j − 1)τj . (A14)

Appendix B. Tables of solvable potentials

Table B1. Exactly solvable potentials.

P(z) ES potential

z2 + 1
∑
k

(η0 + η1 sinh xk) sech2 xk +
a(a − 1)

4

∑
j =k

[
csch2 x−

jk − sech2 x+
jk

]

z2 − 1 1
4

∑
k

[
η+ csch2 xk

2
− η− sech2 xk

2

]
+
a(a − 1)

4

∑
j =k

[
csch2 x+

jk + csch2 x−
jk

]

z2
∑
k

[
C2−
4

e−2xk + 1
2C0C−e−xk

]
+
a(a − 1)

4

∑
j =k

csch2 x−
jk

z
∑
k

(
ω2

4
x2
k +

η3

x2
k

)
+
a(a − 1)

4

∑
j =k

[
1

(x+
jk)

2
+

1

(x−
jk)

2

]

1 ω2
∑
k

x2
k +

a(a − 1)

4

∑
j =k

1

(x−
jk)

2
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The variables x±
jk are defined by x±

jk = 1
2 (xj ±xk). The coefficients η0 and η1 must satisfy

the inequality

1
2 − 2η0 +

√(
1
2 − 2η0

)2
+ 4η2

1 >
[
1 + 2a(N − 1)

]2

while the remaining coefficients verify

a > 1
2 η± � 0 C0 + 2a(N − 1) < 0 η3 � 0 ω > 0.

Table B2. Quasi-exactly solvable potentials.

P(z) QES potential

z2 − 1
∑
k

[
C2

+

4
sinh2 xk + C+λ

(1)
m cosh xk + B(B − 1) csch2 xk

]
+
a(a − 1)

4

∑
j =k

[
csch2 x+

jk + csch2 x−
jk

]

z2
∑
k

[
C2−
4

e−2xk + 1
2C0C−e−xk + C+λ

(2)
m exk +

C2
+

4
e2xk

]
+
a(a − 1)

4

∑
j =k

csch2 x−
jk

z
∑
k

[
η2

0x
6
k + ωη0x

4
k +

(
ω2

4
− 4η0λ

(3)
m

)
x2
k +

B−(B− − 1)

x2
k

]
+
a(a − 1)

4

∑
j =k

[
1

(x+
jk)

2
+

1

(x−
jk)

2

]

z Ãr6 + B̃r4 + C̃r2 +
D̃

r2
+ B−(B− − 1)

∑
k

1

x2
k

+ a(a − 1)
∑
j�k

[
1

(x+
jk)

2
+

1

(x−
jk)

2

]

The variable r is defined by r2 = ∑
k x

2
k , and the parameters λ(i)m (i = 1, 2, 3) are given

by

λ(1)m = a(N − 1) + m + B + 1
2

λ(2)m = a(N − 1) + m + 1
2C0 + 1

λ(3)m = a(N − 1) + m + 1
2B− + 3

4

with m a non-negative integer. For the range of the coefficients in the last potential, see
equations (121), (122) and (124). The coefficients of the remaining potentials satisfy

a > 1
2 C+ < 0 C− > 0 B � 1

B− � 1 η0 > 0 ω > 0.
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[24] Gómez-Ullate D, González-López A and Rodrı́guez M A 2000 Preprint hep-th/0006039 (Phys. Rev. Lett.

submitted)
[25] Shifman M A 1989 Int. J. Mod. Phys. A 4 2897–952
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[28] Sutherland B and Römer R A 1993 Phys. Rev. Lett. 71 2789–92
[29] Inozemtsev V I 1984 Phys. Scr. 29 518–20
[30] Inozemtsev V I and Meshcheryakov D V 1985 Lett. Math. Phys. 9 13–8
[31] Inozemtsev V I and Meshcheryakov D V 1984 Phys. Lett. A 106 105–8
[32] Minzoni A, Rosenbaum M and Turbiner A 1996 Mod. Phys. Lett. A 24 1977–84
[33] Chihara T S 1978 An Introduction to Orthogonal Polynomials (New York: Gordon and Breach)
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